Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts.

نویسندگان

  • J M Ford
  • P C Hanawalt
چکیده

We have shown previously that Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in the removal of UV-induced cyclobutane pyrimidine dimers from genomic DNA, but still proficient in the transcription-coupled repair pathway (Ford, J. M., and Hanawalt, P. C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8876-8880). We have now utilized monoclonal antibodies specific for cyclobutane pyrimidine dimers or 6-4 photoproducts, respectively, to measure their repair in UV-irradiated human fibroblasts. Cells homozygous for p53 mutations were deficient in the repair of both photoproducts, whereas cells heterozygous for mutant p53 exhibited normal repair of 6-4 photoproducts, but decreased initial rates of removal of cyclobutane pyrimidine dimers, compared with normal cells. The specificity of the effect of wild-type p53 on nucleotide excision repair was demonstrated in a p53 homozygous mutant cell line containing a tetracycline-regulated wild-type p53 gene. Wild-type p53 expression and activity were suppressed in the presence of tetracycline, whereas withdrawal of tetracycline resulted in the induction of p53 expression, cell cycle checkpoint activation, and DNA damage-induced apoptosis. The regulated expression of wild-type p53 resulted in the recovery of normal levels of repair of both cyclobutane pyrimidine dimers and 6-4 photoproducts in genomic DNA, but did not alter the transcription-coupled repair of cyclobutane pyrimidine dimers. Therefore, the wild-type p53 gene product is an important determinant of nucleotide excision repair activity in human cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene.

The p53 tumor suppressor gene product is a transcription factor involved in cell-cycle regulation, apoptosis, and DNA repair. We and others have shown that p53 is required for efficient nucleotide excision repair (NER) of UV-induced DNA lesions. p53-deficient cells are defective in the repair of UV photoproducts in genomic DNA but proficient for transcription-coupled repair. Therefore, we exami...

متن کامل

Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation.

We investigated the role of wild-type p53 activity in modulating nucleotide excision repair after UV irradiation in normal and p53-deficient primary human fibroblasts created by expression of the human papillomavirus 16 E6 gene. Compared with parental cells, the E6-expressing fibroblasts were deficient in global genomic repair of both UV-induced cyclobutane pyrimidine dimers and 6-4 photoproduc...

متن کامل

Repair and Sensitive to Ultraviolet Irradiation Gene Are Deficient in Global Genomic Nucleotide Excision E6 Human Fibroblasts Expressing the Human Papillomavirus

We investigated the role of wild-type p53 activity in modulating nucleotide excision repair after UV irradiation in normal and p53-deficient primary human fibroblasts created by expression of the human papillomavirus 16 E6 gene. Compared with parental cells, the E6-expressing fibroblasts were deficient in global genomic repair of both UV-induced cyclobutane pyrimidine dimers and 6-4 photoproduc...

متن کامل

The p53-regulated cyclin-dependent kinase inhibitor, p21 (cip1, waf1, sdi1), is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts.

The p53 tumor suppressor gene is a transcriptional activator involved in cell cycle regulation, apoptosis, and DNA repair. We have shown that p53 is required for efficient nucleotide excision repair of UV-induced DNA photoproducts from global genomic DNA but has no effect on transcription-coupled repair. In order to evaluate whether p53 influences repair indirectly through cell cycle arrest fol...

متن کامل

Human cells deficient in p53 regulated p21(waf1/cip1) expression exhibit normal nucleotide excision repair of UV-induced DNA damage.

Cancer development requires the accumulation of numerous genetic changes, which are believed to initiate through the presence of unrepaired lesions in the genome. In the absence of proficient repair, genotoxic agents can lead to crucial mutations of vital cellular genes via replication of damaged DNA. Many cell cycle regulatory proteins are known to modulate the repair capacity and consequently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 44  شماره 

صفحات  -

تاریخ انتشار 1997